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Abstract

In this paper we present a system for describ-
ing renal stones found in radiographs. The sys-
tem generates descriptions that adhere to those
generated by radiologists. The descriptions are
formulated by discovering the spatial relationships
that exist between the major organs and the renal
stones. The system consists of three major compo-
nents. The first is the timage processing component
which is responsible for locating the stone. The
second component is the inference network mini-
mization component which determines which spa-
tial relationships, of all those that exist between the
stone and the organs, is the most descriptive. The
third component is the natural language generation
component which is responsible for translating the
spatial relationships into appropriate medical ter-
minology. We will illustrate all these components
on several ezamples.

Introduction

A considerable amount of work has been done on the
image processing aspects of locating abnormalities in
radiographs. This work goes beyond simply locating
the abnormality to generating descriptions of the ab-
normalities. Specifically the goal of the project pre-
sented in this paper is to describe renal stones found
in radiographs. The issue is to first determine if a
stone is present in the radiograph, and if so to identify
its location for possible treatment. To describe the
location involves discovering the spatial relationships
of the stone to reference objects in the image. Radi-
ologists categorize stones according to their locations
on the X-ray. The stones are described by observing
the spatial relationship of the stones to other parts of
the radiograph. Those parts include the spinal cord,
the various lumbar bodies of the spinal cord, the blad-
der, the kidney, the calyx, and a few others that are
not usually visible on the X-ray. The ones we use are
shown in figure 1. Our system is unique in its ability to
integrate image processing and natural language pro-
cessing for the task of describing renal stones found in
radiographs. Most research efforts have focused on ei-
ther of the two. Somewhat along the lines of our work
is the work by [Fox and Walker, 1989] who believe that
a useful role of computers in medicine is for imaging
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Figure 1: The model of the urinary system. (3 right
kidney), (2 left kidney), (4,6,10,11 calyx), (8,7 middle-
calyx), (5 L1), (9 L2), (12 L3), (13 L4), (15 Lb), (14
pelvis), (16 inner pelvis) (17 bladder).

systems to be combined with methods for interpreting
clinical data.

More along the lines of traditional medical imaging
systems can be found in [Kobashi and Shapiro, 1992].
They describe a knowledge-based recognition system
that utilizes knowledge of anatomy and C'T (comput-
erized tomography) imaging for organ identification of
the abdomen. A method for automatically detecting
boundaries of brain tumors is given in [Lu et al., 1992].
A similar paper is [Selfridge and Prewitt, 1981] that
describes two boundary-delineating algorithms for de-
tecting kidneys in tomographic images. Most medi-
cal image processing involves standard techniques like
those found in [Wechsler and Sklansky, 1977]. In this
paper the authors describe a system for finding the rib
cage in chest radiographs.

Image Processing

Before we can describe a potential renal stone, we must
be able to find it in the image. This work does not
develop any new algorithins for image processing of X-
ray images, instead we use existing algorithms. Our
contribution is in the area of description generation.
The image processing component of the system needs
to accomplish two separate yet interdependent goals,



the first is to register the image with the model of the
urinary system shown in figure 1 and the second is to
find the stone once the image has been registered. This
is necessary because each image is slightly distorted.
The reasons for the distortions are due to differences
in anatomy and radiologic techniques.

Accurately describing the location of the stone will
depend on how well the system was able to register the
image and locate the stone.

Generating the binary image. The image pro-
cessing module first converts an X-ray image into a
black and white (binary) iimage in order to locate the
spinal cord and pelvis. The spinal cord and pelvis are
the two landmarks that we extract from the X-ray im-
age in order to register it with the model.

Edge Detection. Once we have created the binary
image we need to find the edges. The edges are small
regions in an image that have a rapid change in im-
age intensity. ‘To find the edges we use a HxH edge
operator, patterned after the Sobel 3x3, as a discrete
approximation for the partial derivatives that measure
the gradient [Horn, 1990).

Registering the image.  In this step the image pro-
cessing module needs to find a transformation that
maps the edge image into the model. The goal is to
bring the image as close as possible to the model image.
The system looks for a six parameter affine coordinate
transformation that accomplishes this and applies it to
the image. We are then ready to use this transformed
image to locate the stones.

Locating the stones.
To locate the stones we use the technique sketched out
in [Kimme et al, February 1975)] for circle finding.
Since a majority of the stones are circular in nature
we may use this technique.

Once the stone is found it is superimposed on the
model and we are ready to determine its position rela-
tive to the various reference objects of figure 1.

Inference Network Minimization

In this section we will describe how the sys-
tem chooses which spatial relationships best de-
scribe the position of the stone relative to the
referennice objects from the model. The spa-
tial relationships are represented by computational
models of a set of spatial prepositions that in-
clude: {inside, near, left, right, above, below, between}.
A more detailed exposition about the computational
models can be found in [Abella, 1995]. The system
uses these computational models to determine if two
objects (the stone and an organ or bony structure) are
in a particular spatial relationship (e.g. The stone is
inside the right kidney.).

Many of the spatial relationships that the system
will find as being true are redundant in the final de-
scription, this is why the system is equipped with an
algorithm to eliminate unnecessary relationships be-
tween the figure object (the stone) and the reference
objects (the kidney, the bladder etc). 'The spatial rela-
tionships are all expressed through prepositions. The
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Figure 2: The inference rule: if a preposition pi can
be found that together with p; implies preposition p;
then the relationship between reference object r; and
the figure object f may be eliminated from the final
description.

system eliminates those prepositions that are redun-
dant. When eliminating these prepositions we need
to look at a pair of reference objects r; and r; and
the prepositions p; and p; that are true for (f,r;) and
(f, ;) where f is the stone. If we can find a preposi-
tion px that relates r; and r; such that the following
condition holds

(Vri, [y pe(ricr)) Apilfor) = pi(for5)) (1)
then preposition p; is redundant and we may eliminate
it from the final description. Figure 2 graphically il-
lustrates this condition. For example, suppose r; is the
right kidney, r; is the pelvis, and the stone is inside the
right kidney as illustrated in figure 2. In this case, p; is
tnside and p; is above. Choosing pi = above allows us
to eliminate the fact that the stone is above the pelvis
because the radiologist knows that the right kidney is
above the pelvis and it is already known that the stone
is inside the right kidney. Thus, it is not necessary to
say that the stone is also above the pelvis.

The graph in figure 3 illustrates the inferences we use
to eliminate as many relationships as possible!. Note
that these inferences are independent of the domain;
they are provable based on the computational models
of the spatial prepositions. FEach node represents a
preposition that relates a reference object and a figure
object. An edge between two nodes is labeled by the
relationship between two reference objects that needs
to hold in order to eliminate the preposition this edge
is pointing to.

In determining if we can eliminate a spatial relation-
ship we follow the edges in the graph in the following
manner. We begin at the node p; that describes the
relationship between figure object f and reference ob-
Ject ;. If there exists an edge out of p; that describes
the relationship between r; and r; we follow that link
to the next node p;. If p; describes the spatial rela-
tionship between f and r; then we may eliminate it
from the final description, because p; and p;. imply p;.
For example let us follow the edge from near back to
itsell. We begin at the node labeled near if we know
that f is near r;. We follow the edge out of the node

"The prepositions preceded by the word restricted have
a morc constrained definition than the prepositions that
arc not restricted. This was necessary in order to maintain
the provability of the inferences. Since this issuc is not the
topic of this paper, we will not elaborate further, but more
details can be found in [Abella, 1995]
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Figure 3: The inferences used to eliminate relation-
ships from the final description. Nodes represent
prepositions p for object pairs (f, r;) and edge labels
represent prepositions p for object pairs (r;, ;).

if ; is inside r;. 1f it is we may eliminate the fact that
[ is near r;.

The dashed links in figure 3 represent weak links.
Weak links do not satisfy condition 1, but a somewhat
weaker condition which is that the complement of the
preposition p; is not satisfied:

(Vri, f,r)(pr(riory) Api(f,ri) = = = pi(f, 7))
where —p; stands for the complement of p;. Not all

prepositions have complements. Obvious complement
pairs are (left, right) and (above, below).

Encoding inferences using spanning trees

This section describes how to extract the minimal set
of necessary descriptions based on the graph of fig-
ure 3. We begin with a set of all possible descrip-
tions of a figure object with respect to all the reference
objects. These descriptions can be thought of as a
pair (p,r) where p is a preposition and r is a refer-
ence object, such that p(f,r) = 1, which means that
preposition p describes the relationship between figure
object f and reference object r. Not all of these de-
scriptions are required to describe the figure object.
The graph of figure 3 will enable us to detect the re-
dundant descriptions. This graph defines a ternary
relation T'(p1, p2, p3). We say that prepositions p;, pa,
ps are in relation T if the graph in figure 3 contains
an edge pointing from p; to p2 and labeled p3. For
example, T'(inside, near, inside) = 1. Using this rela-
tion we will define a directed graph G whose nodes are
all possible descriptions (p, ) of a figure object. De-
scriptions (p1, 71) and (p2, r2) are connected by an edge
from (p1, 1) to (p2,72) (denoted (p1.71) — (p2,72)) if
a preposition p3 exists such that r; and ry are related
by ps and py, p2, and p3 are related by T

(p1.71) = (P2, r2) < 3ps) w3y, r2) AT (1, pa, p3))
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Figure 4: The graph G and its spanning forest (thick
edges). The roots of the spanning forest are circled.

For example if f is inside r;y and near ro and if
r1 is inside ro then (inside,r;) — (mear,ry) since
T'(instde, near, inside).

If a node has an ancestor in (i then the description
conveyed by that ancestor would render the description
conveyed by the node redundant. Therefore the min-
imal description consists of the roots of the spanning
forest of G. In an acyclic graph the roots of a spanning
forest cannot be inferred from any other nodes, how-
ever all other nodes can be inferred by them. If the
graph contains cycles then the spanning forest is not
unique and we must apply an ordering on the nodes.
The ordering is based on the importance of the node.
For example, a node that describes a relationship that
involves the kidney is more important than one that
involves the pelvis.

Inference Example

We will present an example of the inference network
minimization using the image in figure 1. This im-
age represents a model of the urinary system with a
stone found in the right® kidney. Each object in the
model (both organs and bony structure, e.g. kidney
and spinal cord) are numbered to simplify the presen-
tation. The first step in retrieving the minimal set of
descriptions is to compute all the spatial relation of the
stone to all the objects in the model. The result is a
list of stone descriptions with respect to the different
objects. This list is

((below 8) (below 6) (left 11) (near 11)
(left 10) (left 9) (left 12) (inside 3)

(near 3) (left 2) (above 16) (above 14))

From these descriptions and the graph of figure 3
we formi the implication graph shown in figure 4. For
example, an edge from the node labeled below 8 to
the node labeled below 6 exists because the stone is
below 8 and below 6 and according to the graph this
edge may be drawn if 8 is below 6 which it is. [n other
words, the fact that the stone is below 8 and that 8

2The right kidney appears left in the image.



is below 6 makes saying that the stone is below 6 un-
necessary. The other edges are generated in this same
manner. This figure also shows the spanning forest
of this graph whose roots are the minimal description
for the stone: ((below 8) (near 11) (inside 3)).
We will see in the next section how this minimal de-
scription translates to the sentence The right lower
quadrant contains a density which may
represent a stone in the lower pole calyx.

Natural Language Generation

In this section we will discuss how the spatial relations
of the previous section are translated into the proper
medical terminology. Each preposition or combination
of prepositions can potentially map into a particular
description of a density.

The inference network minimization algorithm sup-
plies all the spatial relations found to be necessary and
sufficient to describe the stone. It is the job of the lan-
guage generation module to compose the appropriate
input to the natural language generator so that it may
produce a meaningful sentence similar to the types of
sentences that could be found in actual radiology re-
ports. ‘The language generation module is an embryo
of a rule-based system for translating spatial relations
into proper medical terminology. The rules were de-
fined by using the radiology reports associated with
the images. 'The natural language generator we used
is called FUF (Functional Unification Formalism) [El-
hadad, 1993] and it is responsible for generating the
final English sentences.

An example of input to the language generation

module is
((inside right-kidney) (near calyx) (above
middle-calyx))
The language generation module then expands this in-
put and creates the input needed by the natural lan-
guage generator. For this particular example the fact
that the stone is ¢bove the middle-calyx signals the lan-
guage generation module that the stone is in the upper
portion of the right kidney. The language generation
module translates this into the proper medical term
upper pole.

The pair (near calyx) causes the language gener-
ation module to generate the semantic input that will
produce the phrase upper pole calyz or lower pole calyx
depending on whether the stone is above or below the
middle calyx.

The final sentence produced by the natural language
geuerator is
The right upper quadrant contains a density
which probably represents a stone in the
upper pole calyx.

Clinical Examples

We tested our system on five radiographs, each ex-
hibiting a stone in a different location. The system
was successful in locating and describing the stone in
four out of the five cases. In the fifth case the stone
was too small to be discriminated from noise in the
image.
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Figure 5: Original X-ray (top); Transformed edge im-
age superimposed on the model (middle); Stone super-
imposed on the model (bottom)

Example 1: Distal Left Ureteral Stone

Iigure 5 shows the original X-ray, the transformed
edge image superimposed on the model, and the stone
that was found superimposed on the model. After
applying the inference network minimization tech-
nique the spatial relations that resulted were ((inside
inner-pelvis) (right inner-pelvis)). This was
then translated by the language generation preproces-
sor and the proper semantic input was sent to the lan-
guage generator to produce the following sentence:

A density is seen in the distal left ureter.

Example 2: Renal Stone

Figure 6 shows the original X-ray, the transformed
edge image superimposed on the model, and the stone
that was found superimposed on the model. The spa-
tial relations found for this example were ((inside
right-kidney) (left calyx)). 'I'he sentence that
the natural language generator produced for this ex-
ample was:

The right kidney contains a density which



Figure 6: Original X-ray (top); Transformed edge im-
age superimposed on the model {middle); Stone super-
imposed on the model (bottom)

may represent a right renal stone.

Example 3: Calyceal Stone

For the third example the system found the follow-
ing spatial relations: (inside right-kidney) (near
calyx) (below middle-calyx). ‘The sentence the
system generated was:

The right lower quadrant contains a density
which may represent a stone in the lower
pole calyx.

Example 4: Mid-Ureteral Stone

For the fourth example the system found the following
spatial relations: ((left L4) (near right-kidney)
(inside pelvis)). The sentence the system gener-
ated was

A density is seen at the level of L4 on the
right which may represent a stone in the
right mid-ureter.
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Conclusion

This paper covered the material necessary to gain an
understanding of what is involved in the image pro-
cessing and language generation components of a sys-
tem that can generate medically sound descriptions of
stones found in radiographs. The descriptions are med-
ically sound because they are formulated by the rule-
based system whose rules were defined using actual
radiology reports.

We have included in the language generation mod-
ule the capability of generating the most commonly oc-
curring stone descriptions. Further work is needed to
generate less common descriptions of stones as well as
different kidney diseases such as tumors or phleboliths.
This will require collection and testing of inore images.
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